3.945 \(\int (a+b \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\)

Optimal. Leaf size=137 \[ \frac {\tan (c+d x) (2 a B+2 A b+3 b C)}{3 d}+\frac {(3 a A+4 a C+4 b B) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {\tan (c+d x) \sec (c+d x) (3 a A+4 a C+4 b B)}{8 d}+\frac {(a B+A b) \tan (c+d x) \sec ^2(c+d x)}{3 d}+\frac {a A \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

[Out]

1/8*(3*A*a+4*B*b+4*C*a)*arctanh(sin(d*x+c))/d+1/3*(2*A*b+2*B*a+3*C*b)*tan(d*x+c)/d+1/8*(3*A*a+4*B*b+4*C*a)*sec
(d*x+c)*tan(d*x+c)/d+1/3*(A*b+B*a)*sec(d*x+c)^2*tan(d*x+c)/d+1/4*a*A*sec(d*x+c)^3*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.180, Rules used = {3031, 3021, 2748, 3768, 3770, 3767, 8} \[ \frac {\tan (c+d x) (2 a B+2 A b+3 b C)}{3 d}+\frac {(3 a A+4 a C+4 b B) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {\tan (c+d x) \sec (c+d x) (3 a A+4 a C+4 b B)}{8 d}+\frac {(a B+A b) \tan (c+d x) \sec ^2(c+d x)}{3 d}+\frac {a A \tan (c+d x) \sec ^3(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

((3*a*A + 4*b*B + 4*a*C)*ArcTanh[Sin[c + d*x]])/(8*d) + ((2*A*b + 2*a*B + 3*b*C)*Tan[c + d*x])/(3*d) + ((3*a*A
 + 4*b*B + 4*a*C)*Sec[c + d*x]*Tan[c + d*x])/(8*d) + ((A*b + a*B)*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + (a*A*Se
c[c + d*x]^3*Tan[c + d*x])/(4*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3031

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(A*b^2 - a*b*B + a^2*C)*
Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b^2*f*(m + 1)*(a^2 - b^2)), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b
^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m +
 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && Ne
Q[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx &=\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}-\frac {1}{4} \int \left (-4 (A b+a B)-(3 a A+4 b B+4 a C) \cos (c+d x)-4 b C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx\\ &=\frac {(A b+a B) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}-\frac {1}{12} \int (-3 (3 a A+4 b B+4 a C)-4 (2 A b+2 a B+3 b C) \cos (c+d x)) \sec ^3(c+d x) \, dx\\ &=\frac {(A b+a B) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}-\frac {1}{4} (-3 a A-4 b B-4 a C) \int \sec ^3(c+d x) \, dx-\frac {1}{3} (-2 A b-2 a B-3 b C) \int \sec ^2(c+d x) \, dx\\ &=\frac {(3 a A+4 b B+4 a C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {(A b+a B) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}-\frac {1}{8} (-3 a A-4 b B-4 a C) \int \sec (c+d x) \, dx-\frac {(2 A b+2 a B+3 b C) \operatorname {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{3 d}\\ &=\frac {(3 a A+4 b B+4 a C) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {(2 A b+2 a B+3 b C) \tan (c+d x)}{3 d}+\frac {(3 a A+4 b B+4 a C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {(A b+a B) \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {a A \sec ^3(c+d x) \tan (c+d x)}{4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.73, size = 100, normalized size = 0.73 \[ \frac {3 (3 a A+4 a C+4 b B) \tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \left (3 \sec (c+d x) (3 a A+4 a C+4 b B)+8 (a B+A b) \tan ^2(c+d x)+24 (a B+A b+b C)+6 a A \sec ^3(c+d x)\right )}{24 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]

[Out]

(3*(3*a*A + 4*b*B + 4*a*C)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(24*(A*b + a*B + b*C) + 3*(3*a*A + 4*b*B + 4*a
*C)*Sec[c + d*x] + 6*a*A*Sec[c + d*x]^3 + 8*(A*b + a*B)*Tan[c + d*x]^2))/(24*d)

________________________________________________________________________________________

fricas [A]  time = 0.44, size = 158, normalized size = 1.15 \[ \frac {3 \, {\left ({\left (3 \, A + 4 \, C\right )} a + 4 \, B b\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left ({\left (3 \, A + 4 \, C\right )} a + 4 \, B b\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (8 \, {\left (2 \, B a + {\left (2 \, A + 3 \, C\right )} b\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left ({\left (3 \, A + 4 \, C\right )} a + 4 \, B b\right )} \cos \left (d x + c\right )^{2} + 6 \, A a + 8 \, {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="fricas")

[Out]

1/48*(3*((3*A + 4*C)*a + 4*B*b)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*((3*A + 4*C)*a + 4*B*b)*cos(d*x + c)^
4*log(-sin(d*x + c) + 1) + 2*(8*(2*B*a + (2*A + 3*C)*b)*cos(d*x + c)^3 + 3*((3*A + 4*C)*a + 4*B*b)*cos(d*x + c
)^2 + 6*A*a + 8*(B*a + A*b)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4)

________________________________________________________________________________________

giac [B]  time = 0.26, size = 428, normalized size = 3.12 \[ \frac {3 \, {\left (3 \, A a + 4 \, C a + 4 \, B b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (3 \, A a + 4 \, C a + 4 \, B b\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (15 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 9 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 40 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 40 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 72 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 9 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 72 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, A a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, B a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, C a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, A b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, B b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, C b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="giac")

[Out]

1/24*(3*(3*A*a + 4*C*a + 4*B*b)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(3*A*a + 4*C*a + 4*B*b)*log(abs(tan(1/2
*d*x + 1/2*c) - 1)) + 2*(15*A*a*tan(1/2*d*x + 1/2*c)^7 - 24*B*a*tan(1/2*d*x + 1/2*c)^7 + 12*C*a*tan(1/2*d*x +
1/2*c)^7 - 24*A*b*tan(1/2*d*x + 1/2*c)^7 + 12*B*b*tan(1/2*d*x + 1/2*c)^7 - 24*C*b*tan(1/2*d*x + 1/2*c)^7 + 9*A
*a*tan(1/2*d*x + 1/2*c)^5 + 40*B*a*tan(1/2*d*x + 1/2*c)^5 - 12*C*a*tan(1/2*d*x + 1/2*c)^5 + 40*A*b*tan(1/2*d*x
 + 1/2*c)^5 - 12*B*b*tan(1/2*d*x + 1/2*c)^5 + 72*C*b*tan(1/2*d*x + 1/2*c)^5 + 9*A*a*tan(1/2*d*x + 1/2*c)^3 - 4
0*B*a*tan(1/2*d*x + 1/2*c)^3 - 12*C*a*tan(1/2*d*x + 1/2*c)^3 - 40*A*b*tan(1/2*d*x + 1/2*c)^3 - 12*B*b*tan(1/2*
d*x + 1/2*c)^3 - 72*C*b*tan(1/2*d*x + 1/2*c)^3 + 15*A*a*tan(1/2*d*x + 1/2*c) + 24*B*a*tan(1/2*d*x + 1/2*c) + 1
2*C*a*tan(1/2*d*x + 1/2*c) + 24*A*b*tan(1/2*d*x + 1/2*c) + 12*B*b*tan(1/2*d*x + 1/2*c) + 24*C*b*tan(1/2*d*x +
1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d

________________________________________________________________________________________

maple [A]  time = 0.40, size = 223, normalized size = 1.63 \[ \frac {a A \left (\sec ^{3}\left (d x +c \right )\right ) \tan \left (d x +c \right )}{4 d}+\frac {3 a A \sec \left (d x +c \right ) \tan \left (d x +c \right )}{8 d}+\frac {3 a A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8 d}+\frac {2 a B \tan \left (d x +c \right )}{3 d}+\frac {a B \tan \left (d x +c \right ) \left (\sec ^{2}\left (d x +c \right )\right )}{3 d}+\frac {a C \tan \left (d x +c \right ) \sec \left (d x +c \right )}{2 d}+\frac {a C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+\frac {2 A b \tan \left (d x +c \right )}{3 d}+\frac {A b \left (\sec ^{2}\left (d x +c \right )\right ) \tan \left (d x +c \right )}{3 d}+\frac {B b \tan \left (d x +c \right ) \sec \left (d x +c \right )}{2 d}+\frac {B b \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2 d}+\frac {C b \tan \left (d x +c \right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x)

[Out]

1/4*a*A*sec(d*x+c)^3*tan(d*x+c)/d+3/8*a*A*sec(d*x+c)*tan(d*x+c)/d+3/8/d*a*A*ln(sec(d*x+c)+tan(d*x+c))+2/3/d*a*
B*tan(d*x+c)+1/3/d*a*B*tan(d*x+c)*sec(d*x+c)^2+1/2/d*a*C*tan(d*x+c)*sec(d*x+c)+1/2/d*a*C*ln(sec(d*x+c)+tan(d*x
+c))+2/3*A*b*tan(d*x+c)/d+1/3*A*b*sec(d*x+c)^2*tan(d*x+c)/d+1/2/d*B*b*tan(d*x+c)*sec(d*x+c)+1/2/d*B*b*ln(sec(d
*x+c)+tan(d*x+c))+1/d*C*b*tan(d*x+c)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 218, normalized size = 1.59 \[ \frac {16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a + 16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A b - 3 \, A a {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, C a {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, B b {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 48 \, C b \tan \left (d x + c\right )}{48 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="maxima")

[Out]

1/48*(16*(tan(d*x + c)^3 + 3*tan(d*x + c))*B*a + 16*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*b - 3*A*a*(2*(3*sin(d*
x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x +
 c) - 1)) - 12*C*a*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 12*
B*b*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 48*C*b*tan(d*x + c
))/d

________________________________________________________________________________________

mupad [B]  time = 5.29, size = 256, normalized size = 1.87 \[ \frac {\mathrm {atanh}\left (\frac {4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {3\,A\,a}{8}+\frac {B\,b}{2}+\frac {C\,a}{2}\right )}{\frac {3\,A\,a}{2}+2\,B\,b+2\,C\,a}\right )\,\left (\frac {3\,A\,a}{4}+B\,b+C\,a\right )}{d}+\frac {\left (\frac {5\,A\,a}{4}-2\,A\,b-2\,B\,a+B\,b+C\,a-2\,C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {3\,A\,a}{4}+\frac {10\,A\,b}{3}+\frac {10\,B\,a}{3}-B\,b-C\,a+6\,C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (\frac {3\,A\,a}{4}-\frac {10\,A\,b}{3}-\frac {10\,B\,a}{3}-B\,b-C\,a-6\,C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {5\,A\,a}{4}+2\,A\,b+2\,B\,a+B\,b+C\,a+2\,C\,b\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^5,x)

[Out]

(atanh((4*tan(c/2 + (d*x)/2)*((3*A*a)/8 + (B*b)/2 + (C*a)/2))/((3*A*a)/2 + 2*B*b + 2*C*a))*((3*A*a)/4 + B*b +
C*a))/d + (tan(c/2 + (d*x)/2)^7*((5*A*a)/4 - 2*A*b - 2*B*a + B*b + C*a - 2*C*b) - tan(c/2 + (d*x)/2)^3*((10*A*
b)/3 - (3*A*a)/4 + (10*B*a)/3 + B*b + C*a + 6*C*b) + tan(c/2 + (d*x)/2)^5*((3*A*a)/4 + (10*A*b)/3 + (10*B*a)/3
 - B*b - C*a + 6*C*b) + tan(c/2 + (d*x)/2)*((5*A*a)/4 + 2*A*b + 2*B*a + B*b + C*a + 2*C*b))/(d*(6*tan(c/2 + (d
*x)/2)^4 - 4*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 + 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________